Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Front Cell Neurosci ; 18: 1328361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515789

RESUMO

Up to approximately 70% of cancer survivors report persistent deficits in memory, attention, speed of information processing, multi-tasking, and mental health functioning, a series of symptoms known as "brain fog." The severity and duration of such effects can vary depending on age, cancer type, and treatment regimens. In particular, every year, hundreds of thousands of patients worldwide undergo radiotherapy (RT) for primary brain tumors and brain metastases originating from extracranial tumors. Besides its potential benefits in the control of tumor progression, recent studies indicate that RT reprograms the brain tumor microenvironment inducing increased activation of microglia and astrocytes and a consequent general condition of neuroinflammation that in case it becomes chronic could lead to a cognitive decline. Furthermore, radiation can induce endothelium reticulum (ER) stress directly or indirectly by generating reactive oxygen species (ROS) activating compensatory survival signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. In particular, the anomalous accumulation of misfolding proteins in neuronal cells exposed to radiation as a consequence of excessive activation of unfolded protein response (UPR) could pave the way to neurodegenerative disorders. Moreover, exposure of cells to ionizing radiation was also shown to affect the normal proteasome activity, slowing the degradation rate of misfolded proteins, and further exacerbating ER-stress conditions. This compromises several neuronal functions, with neuronal accumulation of ubiquitinated proteins with a consequent switch from proteasome to immunoproteasome that increases neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of brain fog remains elusive and can arise not only during treatment but can also persist for an extended period after the end of RT. In this review, we will focus on the molecular pathways triggered by radiation therapy affecting cognitive functions and potentially at the origin of so-called "brain fog" symptomatology, with the aim to define novel therapeutic strategies to preserve healthy brain tissue from cognitive decline.

2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37513874

RESUMO

Neuropathic pain (NP) is a chronic condition resulting from damaged pain-signaling pathways. It is a debilitating disorder that affects up to 10% of the world's population. Although opioid analgesics are effective in reducing pain, they present severe risks; so, there is a pressing need for non-opioid pain-relieving drugs. One potential alternative is represented by sigma-1 receptor (S1R) antagonists due to their promising analgesic effects. Here, we report the synthesis and biological evaluation of a series of S1R antagonists based on a 2-aryl-4-aminobutanol scaffold. After assessing affinity toward the S1R and selectivity over the sigma-2 receptor (S2R), we evaluated the agonist/antagonist profile of the compounds by investigating their effects on nerve growth factor-induced neurite outgrowth and aquaporin-mediated water permeability in the presence and absence of oxidative stress. (R/S)-RC-752 emerged as the most interesting compound for S1R affinity (Ki S1R = 6.2 ± 0.9) and functional antagonist activity. Furthermore, it showed no cytotoxic effect in two normal human cell lines or in an in vivo zebrafish model and was stable after incubation in mouse plasma. (R/S)-RC-752 was then evaluated in two animal models of NP: the formalin test and the spinal nerve ligation model. The results clearly demonstrated that compound (R/S)-RC-752 effectively alleviated pain in both animal models, thus providing the proof of concept of its efficacy as an antinociceptive agent.

3.
J Neurooncol ; 163(1): 47-59, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37140883

RESUMO

PURPOSE: Patient-derived cancer cell lines can be very useful to investigate genetic as well as epigenetic mechanisms of transformation and to test new drugs. In this multi-centric study, we performed genomic and transcriptomic characterization of a large set of patient-derived glioblastoma (GBM) stem-like cells (GSCs). METHODS: 94 (80 I surgery/14 II surgery) and 53 (42 I surgery/11 II surgery) GSCs lines underwent whole exome and trascriptome analysis, respectively. RESULTS: Exome sequencing revealed TP53 as the main mutated gene (41/94 samples, 44%), followed by PTEN (33/94, 35%), RB1 (16/94, 17%) and NF1 (15/94, 16%), among other genes associated to brain tumors. One GSC sample bearing a BRAF p.V600E mutation showed sensitivity in vitro to a BRAF inhibitor. Gene Ontology and Reactome analysis uncovered several biological processes mostly associated to gliogenesis and glial cell differentiation, S - adenosylmethionine metabolic process, mismatch repair and methylation. Comparison of I and II surgery samples disclosed a similar distribution of mutated genes, with an overrepresentation of mutations in mismatch repair, cell cycle, p53 and methylation pathways in I surgery samples, and of mutations in receptor tyrosine kinase and MAPK signaling pathways in II surgery samples. Unsupervised hierarchical clustering of RNA-seq data produced 3 clusters characterized by distinctive sets of up-regulated genes and signaling pathways. CONCLUSION: The availability of a large set of fully molecularly characterized GCSs represents a valuable public resource to support the advancement of precision oncology for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Transcriptoma , Proteínas Proto-Oncogênicas B-raf/genética , Células-Tronco Neoplásicas/patologia , Medicina de Precisão , Neoplasias Encefálicas/patologia
4.
Cells ; 12(5)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36899938

RESUMO

Prostate cancer (PCa) is one of the most common cancers in European males. Although therapeutic approaches have changed in recent years, and several new drugs have been approved by the Food and Drug Administration (FDA), androgen deprivation therapy (ADT) remains the standard of care. Currently, PCa represents a clinical and economic burden due to the development of resistance to ADT, paving the way to cancer progression, metastasis, and to long-term side effects induced by ADT and radio-chemotherapeutic regimens. In light of this, a growing number of studies are focusing on the tumor microenvironment (TME) because of its role in supporting tumor growth. Cancer-associated fibroblasts (CAFs) have a central function in the TME because they communicate with prostate cancer cells, altering their metabolism and sensitivity to drugs; hence, targeted therapy against the TME, and, in particular, CAFs, could represent an alternative therapeutic approach to defeat therapy resistance in PCa. In this review, we focus on different CAF origins, subsets, and functions to highlight their potential in future therapeutic strategies for prostate cancer.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias da Próstata , Estados Unidos , Masculino , Humanos , Neoplasias da Próstata/patologia , Fibroblastos Associados a Câncer/metabolismo , Antagonistas de Androgênios/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Próstata/patologia , Microambiente Tumoral
5.
Eur J Med Chem ; 249: 115163, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716640

RESUMO

Sigma-1 receptor (S1R) has been considered a promising therapeutic target for several neurodegenerative diseases and S1R agonists have shown neuroprotective activity against glutamate excitotoxicity and oxidative stress. Starting from a previously identified low nanomolar S1R agonist, in this work we prepared and tested novel benzylpiperidine/benzylpiperazine-based compounds designed by applying a ring opening strategy. Among them, 4-benzyl-1-(2-phenoxyethyl)piperidine 6b (S1R Ki = 0.93 nM) and 4-benzyl-1-(3-phenoxypropyl)piperidine 8b (S1R Ki = 1.1 nM) emerged as high affinity S1R ligands and showed selectivity over S2R and N-methyl-d-aspartate receptor (NMDAR). Candidate compounds behaved as potent S1R agonists being able to enhance the neurite outgrowth induced by nerve growth factor (NGF) in PC12 cell lines. In SH-SY5Y neuroblastoma cell lines they exhibited a neuroprotective effect against rotenone- and NMDA-mediated toxic insults. The neuroprotective activity of 6b and 8b was reverted by co-treatment with an S1R antagonist, PB212. Compounds 6b and 8b were tested for cytotoxicity in-vitro against three human cancer cell lines (A549, LoVo and Panc-1) and in-vivo zebrafish model, resulting in a good efficacy/safety profile, comparable or superior to the reference drug memantine. Overall, these results encourage further preclinical investigations of 6b and 8b on in-vivo models of neurodegenerative diseases.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Receptores sigma , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Peixe-Zebra/metabolismo , Neuroblastoma/tratamento farmacológico , Estresse Oxidativo , Doenças Neurodegenerativas/tratamento farmacológico , Piperidinas/uso terapêutico
6.
Mol Imaging Biol ; 25(3): 504-512, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36261778

RESUMO

PURPOSE: RNA:DNA hybrids are co-transcriptional products with acknowledged cytoplasmic pro-inflammatory role as activators of the cGAS-STING pathway. We recently proved them also as radiation-induced senescence messages for the abscopal effect mediation, demonstrating the need for a functional p53 for their production and release in A549 and H1299 tumour cells. However, little is known about their role under different stress conditions, especially in cancer cells. METHODS: In this work, we open the investigation making use of automated quantitative imaging to characterize the hybrid subcellular distribution in HeLa cells grown under different oxygen pressures or exposed to different ionizing radiation doses. After cell imaging by confocal fluorescent microscopy, we apply automated imaging methods developed on purpose to quantify hybrid foci and nuclear cluster intensity, regional and local density and dimension. RESULTS: We show that alteration of culture oxygenation increases hybrid cytoplasmic presence, especially when caused by an hyperoxic environment, with evident hybrid gathering at the cell membrane. Ionizing radiations always fail to increase hybrids, in accordance with the absence of functional p53 in HeLa cells. However, dose-dependent effects are still evident and suggest a threshold dose of 7.5 Gy for remarkable hybrid reduction. CONCLUSION: Together with our previous results, these data demonstrate for the first time that different types of stress can increase hybrid production in cancer cells and by at least two different pathways, one p53-dependent triggerable by ionizing radiations and one p53-independent triggerable by oxidative stress. Together, our findings provide a starting point for understanding hybrid role in tumour stress response.


Assuntos
Oxigenoterapia Hiperbárica , RNA , Humanos , Células HeLa , Proteína Supressora de Tumor p53/metabolismo , DNA , Oxigênio/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36176568

RESUMO

Background and purpose: In this study we want to evaluate the efficacy of yoga practice on dysfunctional stress, inflammation and QOL in breast cancer patients undergoing adjuvant radiotherapy. Patients and methods: Patients with stage 0 to III breast cancer were recruited before starting radiotherapy (XRT) and were randomly assigned to yoga group (YG) two times a week during XRT or control group (CG). Self-report measures of QOL, fatigue and sleep quality, and blood samples were collected at day 1 of treatment, day 15, end of treatment and 1, 3 and 6 months later. Cortisol blood level, IL6, IL10, IL1RA, TNFα and lymphocyte-to-monocyte ratio were analyzed as measures of dysfunctional stress and inflammation. Results: Patients started XRT and yoga classes in October 2019. Due to COVID-19 pandemic we closed the enrollment in March 2020. We analysed 24 patients, 12 YG and 12 CG. The analysis of blood cortisol levels revealed an interaction (p = 0.04) between yoga practice and time, in particular YG had lower cortisol levels at the end of XRT respect to CG (p-adj = 0.02). The analysis of IL-1RA revealed an interaction effect (p = 0.04) suggesting differences between groups at some time points that post-hoc tests were not able to detect. Conclusions: To our knowledge, this is the first study to evaluate the effects of yoga in a cancer population studying inflammation markers, cortisol trend and QOL during and until 6 months after XRT. This study suggests that yoga practice is able to reduce stress and inflammation levels over time. Besides including a larger number of patients to increase the power, future studies should consider other inflammatory or pro inflammatory factors and long-term yoga program to gain more evidence on yoga practice benefits.

8.
Comput Struct Biotechnol J ; 20: 4122-4130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016714

RESUMO

Comet assay provides an easy solution to estimate DNA damage in single cells through microscopy assessment. It is widely used in the analysis of genotoxic damages induced by radiotherapy or chemotherapeutic agents. DNA damage is quantified at the single-cell level by computing the displacement between the genetic material within the nucleus, typically called "comet head", and the genetic material in the surrounding part of the cell, considered as the "comet tail". Today, the number of works based on Comet Assay analyses is really impressive. In this work, besides revising the solutions available to obtain reproducible and reliable quantitative data, we developed an easy-to-use tool named CometAnalyser. It is designed for the analysis of both fluorescent and silver-stained wide-field microscopy images and allows to automatically segment and classify the comets, besides extracting Tail Moment and several other intensity/morphological features for performing statistical analysis. CometAnalyser is an open-source deep-learning tool. It works with Windows, Macintosh, and UNIX-based systems. Source code, standalone versions, user manual, sample images, video tutorial and further documentation are freely available at: https://sourceforge.net/p/cometanalyser.

9.
Molecules ; 27(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889200

RESUMO

Different pathological conditions, including viral infections and cancer, can have a massive impact on the endoplasmic reticulum (ER), causing severe damage to the cell and exacerbating the disease. In particular, coronavirus infections, including SARS coronavirus-2 (SARS-CoV-2), responsible for COVID-19, cause ER stress as a consequence of the enormous amounts of viral glycoproteins synthesized, the perturbation of ER homeostasis and the modification of ER membranes. Therefore, ER has a central role in the viral life cycle, thus representing one of the Achilles' heels on which to focus therapeutic intervention. On the other hand, prolonged ER stress has been demonstrated to promote many pro-tumoral attributes in cancer cells, having a key role in tumor growth, metastasis and response to therapies. In this report, adopting a repurposing approach of approved drugs, we identified the antiplatelet agent ticlopidine as an interferent of the unfolded protein response (UPR) via sigma receptors (SRs) modulation. The promising results obtained suggest the potential use of ticlopidine to counteract ER stress induced by viral infections, such as COVID-19, and cancer.


Assuntos
Tratamento Farmacológico da COVID-19 , Neoplasias , Reposicionamento de Medicamentos , Estresse do Retículo Endoplasmático , Humanos , Neoplasias/patologia , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , SARS-CoV-2 , Ticlopidina/farmacologia , Resposta a Proteínas não Dobradas
10.
Theranostics ; 12(2): 859-874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976217

RESUMO

Rationale: Caloric restriction improves the efficacy of anti-cancer therapy. This effect is largely dependent on the increase of the extracellular ATP concentration in the tumor microenvironment (TME). Pathways for ATP release triggered by nutrient deprivation are largely unknown. Methods: The extracellular ATP (eATP) concentration was in vivo measured in the tumor microenvironment of B16F10-inoculated C57Bl/6 mice with the pmeLuc probe. Alternatively, the pmeLuc-TG-mouse was used. Caloric restriction was in vivo induced with hydroxycitrate (HC). B16F10 melanoma cells or CT26 colon carcinoma cells were in vitro exposed to serum starvation to mimic nutrient deprivation. Energy metabolism was monitored by Seahorse. Microparticle release was measured by ultracentrifugation and by Nanosight. Results: Nutrient deprivation increases eATP release despite the dramatic inhibition of intracellular energy synthesis. Under these conditions oxidative phosphorylation was dramatically impaired, mitochondria fragmented and glycolysis and lactic acid release were enhanced. Nutrient deprivation stimulated a P2X7-dependent release of ATP-loaded, mitochondria-containing, microparticles as well as of naked mitochondria. Conclusions: Nutrient deprivation promotes a striking accumulation of eATP paralleled by a large release of ATP-laden microparticles and of naked mitochondria. This is likely to be a main mechanism driving the accumulation of eATP into the TME.


Assuntos
Trifosfato de Adenosina/metabolismo , Micropartículas Derivadas de Células/metabolismo , Neoplasias/metabolismo , Animais , Restrição Calórica , Micropartículas Derivadas de Células/efeitos dos fármacos , Citratos/farmacologia , Neoplasias do Colo/metabolismo , Espaço Extracelular/metabolismo , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nutrientes , Células Tumorais Cultivadas
11.
Cell Death Dis ; 13(1): 80, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075119

RESUMO

Glioblastoma (GBM) is the most lethal brain tumor in adults. Radiation, together with temozolomide is the standard treatment, but nevertheless, relapse occurs in nearly all cases. Understanding the mechanisms underlying radiation resistance may help to find more effective therapies. After radiation treatment, ATP is released into the tumor microenvironment where it binds and activates purinergic P2 receptors, mainly of the P2X7 subtype. Two main P2X7 splice variants, P2X7A and P2X7B, are expressed in most cell types, where they associate with distinct biochemical and functional responses. GBM cells widely differ for the level of P2X7 isoform expression and accordingly for sensitivity to stimulation with extracellular ATP (eATP). Irradiation causes a dramatic shift in P2X7 isoform expression, with the P2X7A isoform being down- and the P2X7B isoform up-modulated, as well as extensive cell death and overexpression of stemness and senescence markers. Treatment with P2X7 blockers during the post-irradiation recovery potentiated irradiation-dependent cytotoxicity, suggesting that P2X7B activation by eATP generated a trophic/growth-promoting stimulus. Altogether, these data show that P2X7A and B receptor isoform levels are inversely modulated during the post-irradiation recovery phase in GBM cells.


Assuntos
Trifosfato de Adenosina , Glioblastoma , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Recidiva Local de Neoplasia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Purinérgicos P2X7/genética , Microambiente Tumoral
12.
Nat Methods ; 18(11): 1294-1303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725485

RESUMO

Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células , Bases de Conhecimento , Neoplasias/patologia , Software , Esferoides Celulares/patologia , Microambiente Tumoral , Técnicas de Cultura de Células/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/metabolismo , RNA-Seq , Reprodutibilidade dos Testes , Esferoides Celulares/imunologia , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
13.
Cell Death Dis ; 12(12): 1088, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789738

RESUMO

Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.


Assuntos
Exossomos/metabolismo , Melanoma/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Proliferação de Células/fisiologia , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Metástase Neoplásica , Receptores Purinérgicos P2X7/genética
14.
Front Oncol ; 11: 643469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859944

RESUMO

BACKGROUND: The presence of hypoxic cells in high-grade glioma (HGG) is one of major reasons for failure of local tumour control with radiotherapy (RT). The use of hyperbaric oxygen therapy (HBO) could help to overcome the problem of oxygen deficiency in poorly oxygenated regions of the tumour. We propose an innovative approach to improve the efficacy of hypofractionated stereotactic radiotherapy (HSRT) after HBO (HBO-RT) for the treatment of recurrent HGG (rHGG) and herein report the results of an ad interim analysis. METHODS: We enrolled a preliminary cohort of 9 adult patients (aged >18 years) with a diagnosis of rHGG. HSRT was administered in daily 5-Gy fractions for 3-5 consecutive days a week. Each fraction was delivered up to maximum of 60 minutes after HBO. RESULTS: Median follow-up from re-irradiation was 11.6 months (range: 3.2-11.6 months). The disease control rate (DCR) 3 months after HBO-RT was 55.5% (5 patients). Median progression-free survival (mPFS) for all patients was 5.2 months (95%CI: 1.34-NE), while 3-month and 6-month PFS was 55.5% (95%CI: 20.4-80.4) and 27.7% (95%CI: 4.4-59.1), respectively. Median overall survival (mOS) of HBO-RT was 10.7 months (95% CI: 7.7-NE). No acute or late neurologic toxicity >grade (G)2 was observed in 88.88% of patients. One patient developed G3 radionecrosis. CONCLUSIONS: HSRT delivered after HBO appears to be effective for the treatment of rHGG, it could represent an alternative, with low toxicity, to systemic therapies for patients who cannot or refuse to undergo such treatments. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier NCT03411408.

15.
J Exp Clin Cancer Res ; 40(1): 89, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673859

RESUMO

BACKGROUND: Recent developments in abscopal effect strongly support the use of radiotherapy for the treatment of metastatic disease. However, deeper understanding of the molecular mechanisms underlying the abscopal effect are required to best benefit a larger proportion of patients with metastasis. Several groups including ours, reported the involvement of wild-type (wt) p53 in radiation-induced abscopal effects, however very little is known on the role of wtp53 dependent molecular mechanisms. METHODS: We investigated through in vivo and in vitro approaches how wtp53 orchestrates radiation-induced abscopal effects. Wtp53 bearing (A549) and p53-null (H1299) NSCLC lines were xenotransplanted in nude mice, and cultured in 2D monolayers and 3D tumor spheroids. Extracellular vesicles (EVs) were isolated from medium cell culture by ultracentrifugation protocol followed by Nanoparticle Tracking Analysis. Gene expression was evaluated by RT-Real Time, digital qRT-PCR, and dot blot technique. Protein levels were determined by immunohistochemistry, confocal anlysis, western blot techniques, and immunoassay. RESULTS: We demonstrated that single high-dose irradiation (20 Gy) induces significant tumor growth inhibition in contralateral non-irradiated (NIR) A549 xenograft tumors but not in NIR p53-null H1299 or p53-silenced A549 (A549sh/p53) xenografts. We further demonstrates that irradiation of A549 cells in vitro induces a senescence-associated secretory phenotype (SASP) producing extracellular vesicles (EVs) expressing CD63 and carrying DNA:RNA hybrids and LINE-1 retrotransposon. IR-A549 EVs also hamper the colony-forming capability of recipient NIR A549 cells, induce senescent phenotype, nuclear expression of DNA:RNA hybrids, and M1 macrophage polarization. CONCLUSIONS: In our models, we demonstrate that high radiation dose in wtp53 tumors induce the onset of SASP and secretion of CD63+ EVs loaded with DNA:RNA hybrids and LINE-1 retrotransposons that convey senescence messages out of the irradiation field triggering abscopal effect in NIR tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Células RAW 264.7
17.
Cancer Lett ; 506: 152-166, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33652086

RESUMO

Human glioblastoma (GBM) is one of the most feared primary malignant brain tumors. We investigated the effect of hyperbaric oxygen (HBO) on GBM patient-derived cells and on microglia cell biology (CHME-5). HBO administered to GBM cells inhibited cell proliferation, downregulated hypoxia-inducible factor 1 α (HIF-1α) expression, and induced glucose metabolism reprogramming (glucose rewiring). It also affected the ability of a cell to perpetuate its lineage, give rise to differentiated cells and interact with its environment to maintain a balance between quiescence, proliferation and regeneration (stemness features). Such an effect may be ascribable to an increase in intracellular ROS levels and to the triggering of inflammasome signaling by HBO itself through caspase1 activation. Moreover, the results obtained from the combination of HBO and radiotherapy (RT) clearly showed a radiosensitising effect of HBO on GBM cells grown in both 2D and 3D, and a radioprotective effect of HBO in CHME-5. In addition, the exposure of M0 microglia cells to exhausted medium or extracellular vesicles (EVs) of HBO-treated GBM cells upregulated the expression of pro-inflammatory cytokines IL1ß, IL6 and STAT1, whilst also downregulating the anti-inflammatory cytokine PPARγ. Collectively, these data provide a scientific rationale for the use of HBO in combination with RT for the treatment of patients with GBM.


Assuntos
Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-1beta/genética , PPAR gama/genética , Fator de Transcrição STAT1/genética , Caspase 1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Glucose/genética , Glucose/metabolismo , Humanos , Oxigenoterapia Hiperbárica/efeitos adversos , Inflamassomos/efeitos dos fármacos , Interleucina-6/genética , Microglia/efeitos dos fármacos , Microglia/patologia , Oxigênio/farmacologia , Pressão , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Sensors (Basel) ; 21(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540807

RESUMO

Subcellular spatial location is an essential descriptor of molecules biological function. Presently, super-resolution microscopy techniques enable quantification of subcellular objects distribution in fluorescence images, but they rely on instrumentation, tools and expertise not constituting a default for most of laboratories. We propose a method that allows resolving subcellular structures location by reinforcing each single pixel position with the information from surroundings. Although designed for entry-level laboratory equipment with common resolution powers, our method is independent from imaging device resolution, and thus can benefit also super-resolution microscopy. The approach permits to generate density distribution maps (DDMs) informative of both objects' absolute location and self-relative displacement, thus practically reducing location uncertainty and increasing the accuracy of signal mapping. This work proves the capability of the DDMs to: (a) improve the informativeness of spatial distributions; (b) empower subcellular molecules distributions analysis; (c) extend their applicability beyond mere spatial object mapping. Finally, the possibility of enhancing or even disclosing latent distributions can concretely speed-up routine, large-scale and follow-up experiments, besides representing a benefit for all spatial distribution studies, independently of the image acquisition resolution. DDMaker, a Software endowed with a user-friendly Graphical User Interface (GUI), is also provided to support users in DDMs creation.


Assuntos
Microscopia , Software , Processamento de Imagem Assistida por Computador
19.
Cell Death Dis ; 12(1): 127, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500395

RESUMO

Prostate cancer represents the major cause of cancer-related death in men and patients frequently develop drug-resistance and metastatic disease. Most studies focus on hormone-resistance mechanisms related to androgen receptor mutations or to the acquired property of prostate cancer cells to over-activate signaling pathways. Tumor microenvironment plays a critical role in prostate cancer progression. However, the mechanism involving androgen/androgen receptor signaling in cancer associated fibroblasts and consequences for prostate cancer progression still remains elusive. We now report that prostate cancer associated fibroblasts express a transcriptional-incompetent androgen receptor. Upon androgen challenging, the receptor co-localizes with the scaffold protein filamin A in the extra-nuclear compartment of fibroblasts, thus mediating their migration and invasiveness. Cancer-associated fibroblasts move towards epithelial prostate cancer cells in 2D and 3D cultures, thereby inducing an increase of the prostate cancer organoid size. Androgen enhances both these effects through androgen receptor/filamin A complex assembly in cancer-associated fibroblasts. An androgen receptor-derived stapled peptide, which disrupts the androgen receptor/filamin A complex assembly, abolishes the androgen-dependent migration and invasiveness of cancer associated fibroblasts. Notably, the peptide impairs the androgen-induced invasiveness of CAFs in 2D models and reduces the overall tumor area in androgen-treated 3D co-culture. The androgen receptor in association with ß1 integrin and membrane type-matrix metalloproteinase 1 activates a protease cascade triggering extracellular matrix remodeling. The peptide also impairs the androgen activation of this cascade. This study offers a potential new marker, the androgen receptor/filamin A complex, and a new therapeutic approach targeting intracellular pathways activated by the androgen/androgen receptor axis in prostate cancer-associated fibroblasts. Such a strategy, alone or in combination with conventional therapies, may allow a more efficient treatment of prostate cancer.


Assuntos
Filaminas/metabolismo , Neoplasias da Próstata/genética , Humanos , Masculino , Transfecção , Microambiente Tumoral
20.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260926

RESUMO

Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas/patologia , Receptores sigma/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Albuminas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Paclitaxel/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...